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Abstract grain parallelism [2], [14]. The impact of parallelism on
Memory modules dominate the cost, performance, and powg{emory size has not been previously studied in a consistent
of embedded systems that process multidimensional signalgay Together with tools for estimating the area of functional
typically present in image and video processing. Therefornits and the performance of the design, our memory
studying the impact of parallelism on memory size is Cruc'ael‘];stimation approach can be used in a high level exploration

feonraglaedm?ellci)ﬁeﬁ{sstesr];er%erfg:tri?i%rr]\?r? agr?cljng( e}g?gtiggSt\’Nte ethodology to trade-off performance against system cost.
9 y P 9 p y Our paper is organized as follows. Section 2 briefly

propose a memory size estimation method for algorlthmlFeviews some major results obtained in the field of memory

specifications containing multidimensional arrays and = .~""> ; X . S
parallel constructs, intended as part of a high_|eve|est|mat|on. Section 3 defines the memory size estimation

partitioning and exploration methodology. The systenPrObl,em- Our approach is presenteq in Section 4. In S_ection 5
designer can trade-off estimation accuracy for increased ruM'€ discuss the influence of parallelism on memory size. Our
time. We present the results of our estimation approach on&rPerimental results are summarized in Section 6, followed
number of image and video processing kernels, and discuby the conclusions and our future directions of research in
some preliminary results on the influence of parallelism orSection 7.

storage requirement. .
gered 2 Previous work
1 Introduction One of the earliest approaches to memory estimation is the

In the design of embedded HW/SW systems, the high levégft edge algorithm [5], which assigns the scalar variables to
design space exploration step is critical for obtaining a codg9iSters. This approach is not suited for multidimensional
effective implementation. Decisions at this level have th&'9n@l processing applications, due to the prohibitive

highest impact on the final result. The step of partitioning th§°Mputational effort. .
initial specification into HW/SW, as well as between . One of the earliest approaches of handling arrays of

different processing units, together with decisions regarding!9nals is based on clustering the arrays into memory modules
the parallelism inherent in such designs, allow trading-off theUch that a cost function is minimized [9]. The possibility of

system performance against cost. To drive this process, a ?é@”?"s with disjoint life times to share common storage
of fast estimation tools is crucial. ocations is however ignored, the resulting memory

Varying the code parallelism by means of codereduirements often significantly exceeding the actual storage
transformations [2] (e.g., instruction reordering, |Oopneeded. More recently, [10] proposed a more refined array

splitting, fusion, fission, interchanging, skewing [14]), or by clustering, along with a technique for binding groups of

assigning code portions to different partitions, may result i/7ays to memory modules drawn from a given library.

significant performance variations for the systemOWever, it seems that the technique does not perform in-
implementation. More instructions executed in parallel lea®/@C€ mapping within an array.

usually to higher performance, but hardware cost may grow APProaches which deal with large multidimensional
substantially. arrays operate on non-procedural [1] and stream models [7].

In the algorithmic specifications of image and videoNon-procedural  specifications do not have enough

applications the multidimensional variables (signals) are thififormation to estimate accurately the memory size, since by

main data structures. These large arrays of signals have to §¥nding the instruction sequence, large memory variations
stored in on-chip and off-chip memories. In such®'® produced. For example, assuming the code in Figure 1ais

applications, memory often proves to be the most importaf{on-Procedural, the memory size could vary between 100 and
hardware resource. Therefore it is important to be able 20 locations, as in Figure 1b. [13] uses a data-flow oriented
predict after a set of (parallelizing) transformations and//®W. as [1], but has good results for simpler specifications

partitioning steps the memory requirements for every desigffonstant loop bounds, simpler indices). [12] modified the
alternative. oop hierarchy and the execution sequence of the source code,

We propose a method for memory size estimation,,by placing polyhedrons of signals derived from the operands

targeting specifications with multidimensional arrays, N @ common space and determining an ordering vector in that
containing both instruction level (fine-grain) and coarseSPace. None of the above techniques addresses parallel

specifications.
* This research is partially supported by NSF Grant MIP-9708067.



Other memory management approaches use the acc«2) The input specifications are interpreted procedurally, thus
frequencies to balance the port usage [11], and to optimize ticonsidering the operation ordering consistent with the source
partitioning between on-chip scratch-pad and cache-accesscode. Most of the previous approaches operated on non-
memories [6]. They do not consider the memory size thougtprocedural specifications, but in practice a large segment of

. . embedded applications market (e.g., DSPStone benchmark

3 The memory estimation problem suite [15]) (?;E)erates on procefju?al descriptions, so we
The problem of memory size estimation is, given an inpuconsider it is necessary to accommodate also these
algorithmic  specification containing multidimensional methodologies.
arrays, predict what is the number of memory location:  Our memory size estimation tool handles specifications
necessary to satisfy the storage requirements of the systencontaining nested loops having affine boundaries. The

The ability to predict the memory characteristics ofoperands can be multidimensional signals with (complex)
behavioral specifications without synthesizing them is vital tcaffine indices. The parallelism is explicitly described by
producing high quality designs with reasonable turnarountmeans of cobegin-coend and forall constructs. This
During the HW/SW partitioning and design space exploratioiparallelism could be described explicitly by the user in the
phase the memory size varies considerably. For example, input specification, or could be generated through
Figure 1, by assigning the second and third loop to differerparallelizing transformations on procedural code. We assume
HW/SW partitions, the memory requirement changes by 50%he input has the single-assignment property (this could be
(we assume that arrag is no longer needed and can begenerated through a preprocessing step).
overwritten). Here the production of the arteipcreases the The output of our memory estimation tool is a range of
memory by 50, without consuming values. On the other hanthe memory size, defined by a lower- and upper-bound. The
the loop producing arrag consumes 100 values (2 per predicted memory size for the input algorithm lies within this
iteration). Thus, it is beneficial to produce the aca&arlier, range, and in most of the cases it is close to the lower-bound
and reuse the memory space made available by arBy  (see the experiments). Thus, we see the lower bound as a
producingb andc in parallel, the memory requirement is 100. prediction of the expected memory size, while the upper
bound gives an idea of the accuracy of the prediction (i.e., the

or i=1 to 100 or i=1 to 100 A 3 N
afil=2%; error margln). When.the.two b_ounds are equal, an “exact

memory size evaluation is achieved (by exact we mean the

or j=1 to 50 best that can be achieved with the information available at

o1 =1 to 50 or k=1 to 50 this step, without doing the actual memory assignment). In
clkl=a[2*K]+a[2*k+1k order to handle complex specifications, we provide a

or k=1 to 50 mechanism to trade-off the accuracy of predicting the storage

clk]=a[2*K]+a[2*k+1]. memory requirement = 100 range against the computational effort.

memory requirement = 150 b) Partitioned code. 4 Memory estimation approach

a) Initial code . .
Figure 1. Memory size variation during Our memory estimation approach (called MemoRex) has two
par.titioning/paralIeIization parts. Starting from a high level description which may
contain also parallel constructs, the Memory Behavior

Our estimation approach considers such reuse of SPAC halysis (MBA) phase analyzes the memory size variation
and gives a fast estimate of the memory size. To allow Higt y VIBAA) P y y Size va '
by approximating the memory trace, as shown in Figure 2,

Level design decisions, it is very important to provide 900 i 2 covering bounding area. Then. the Memorv Size
memory size estimates with reasonable computation eﬁo'Pred%ction (MSP? com utegthe MemorV Size range w);nch i
without having to perform complete memory assignment fothe output of the estirFr)1at0r The backv)\//ard dottegd ’arrow in
each design alternative. During synthesis, when the memo. urep2 shows that the laccurac can be increased b
assignment is done, it is necessary to make sure that diﬁeresu%sequent passes y y
arrays (or parts of arrays) with non-overlapping lifetimes The memory trace represents the size of the occupied

share the same space. The work in [3] addresses this proble ¢ . h loaical ti ten during th ’ £ th
obtaining results close to optimal. Of course, by increasin> oragel In _eﬁc O%'Ca dlm? step hurlng I € exewf_'on_o €
sharing between different arrays, the addressing becommplgagorg m. W enh ealing with complex spheC| ications,

more complex, but in the case of large arrays, it is wort\ve do not determine the exact memory trace (the continuous

increasing the cost of the addressing unit in order to redud "€ In_the lgraprf]]:c from F.'glére 2) dge tcc)j_ the high
the memory size. computational  effort required. A bounding area

Our memory size estimation approach uses elements encompassing the memory trace - the shaded rectangles from

) : . ; the graphic in Figure 2 - is determined instead.
the polyhedral data-flow analysis model introduced in [1], The storage requirement of an input specification is
with the following major differences: obviously the peak of the (continuous) trace. When the
(1) The input specifications may contain explicit constructsmemor y tracep cannot be  determined e;<actl the
for parallel execution. This represents a significant extensio y y:

required for design space exploration, and is not supported ﬁppgiﬂ{)noittlnn dgs 2?%?3'3%02@2 aiar]rkﬁrsmr/;c:‘e ;hoi tlr?(\évfrz_erigtrj
any of the previous memory estimation /allocation pp pear. g y

: ' . requirement represents the result of our estimation tool.
approaches mentioned in Section 2. The MemoRex algorithm (Figure 3) has five steps.



Employing the terminology introduced in [12], the first stepCard{c[l], 1<=I<=5} = 5, respectively. In general though,
computes the number of array elements produced by eathe size of signal domains is more difficult to compute, for
definition domain and consumed by each operand domaiinstance, when handling array references within the scope of
The definition/operand domains are the array references loop nests and conditions: our tool employs the algorithm

the left/right hand side of the assignments. which determines the size of linearly bounded lattices,
ﬂ)r 1=0 to 99 do Memory Behavior Analysis described in [1].
for J=0 t0 99 do 1. Perform data-dependence On the other hand, the number of array elements
cobegin analysis consumed by an operand domain, is not always equal to the
a[l,JJ=b[J,1+5]; b[I+1,*3]=If5; 2. Compute memory size size of the operand domain, as some of the array elements
k coend; between loop nests may belong also to other operands from subsequent
forall k=1 to 100 do 3. Determine bounding assignments. For instance, only two array elements are
pE— " area ffg_thepmequry trace  consumed by the operand domaijti (i.e.,a[7], a[9]) and
; ; emory Size Prediction three other array element&{1], a[3], a[5]) by the operand
Memory Behavior Analysis : : , Yy ’ , y per
y y 4. E:;t‘eré“'”e memory size domaina[11-1], as the othea array elements of even index
ge are read also by the operas@*I] in the third loop.
Ceupied memory trac Accuracy increase | L th tati f dvi . Is i
mem 5. lfmore accuracy needed, n general, the computation of dying signals is more
siz split the critical rectangles ~ complicated when dealing with loop nests and conditions. We
and goto step 1 perform the computation e_mploymg a s_ymbol_|c time function
boundin Figure 3. The for each assignment, which chara_cterlzes (in a cIos_ed form
= ; formula) when each array element is read, thus allowing us to
area MemoRex algorithm ; : .
' > find the last read of each array element, i.e., the domain
exeenfon I for 1=1 t0 10 do consuming that element
v a[ll=!: 9 '
. - =1 t 4.2 Computing the memory size between loop nests
Memory Size Prediction fori=1t010do puting y P :
b[l]=a[l]+a[11-1]; For each nest of loops, the total number of memory locations
for I=1to 5 do produced/consumed is the sum of the locations produced/
{memory size range = (250, 3))0) C[']=ab[22’2]|+t1J[_2*']+ consumed in each domain within that loop nest. The memory
) . (21+1]; . size after executing a loop nest is the sum of the memory size
Figure 2. Flow of the MemoRex  Figure 4. lllustrative  at the beginning of the loop nest, and the number of array
algorithm example elements produced minus the number of array elements

Step 2 determines the occupied memory size at thconsumed within the loop nest:
boundaries between the loop nests. For instance, such mem(end_loop) = mem(begin_loop) + sum(prod’s) - sum(consmp’s)
imaginary boundary succeeds the two nested loops arAs shown in Figure 5a, the memory size for our example is O
precedes théorall loop in the code from Figure 2. In fact, atthe beginning of the first loop, 10 after the execution of the
Step 2 determines a set of poiots the memory tracelo  first loop (because this loop produces 10 array elements and
determine or approximate the unknown parts of the tracidoes not consume any), and 15 at the end of the second loop,
Step 3 determines a set of covering bounding rectangleas 10 new array elements are produdgdl. (L0]), while the
represented as shaded rectangles in Figure 2. This is tfive odd-index array elementsare no longer necessary.

output of the Memory Behavior Analysis part of ourg 3 Determining the bounding rectangles

algonth_m. Based on the memory _behawor, Step ‘Based on the inform3ation already acquired in Steps 1 and 2,
approximates the trace peak, determining the range for t'our algorithm constructs bounding rectangles for each loop
memsory rgqu:cremel;]t. boundi f1h tnest in the specification. These rectangles are built such that

tep S refines the bounding area of the memory trace they cover the memory trace (see Figure 5b). Thus, they

breaII:]ng tl)lp ﬂ:f larger rectang_les tlnto smaller on(-“:'[s.l Tti;characterize the behavior of the memory size for the portion
resulting bounding area approximates more accurately t 1o qer analysis.

shape of the memory trace, and the resulting range for t

. . Occupied Occupied
memory requirement will get narrower. mema mem
In the following, we will employ for illustration the 15
simple code in Figure 4. 1
. 5 .
4.1 Data-dependence analysis loop 1| loop 2 [loop

10 20 25 time

By studying the dependence relations between the arr:
references in the code, this step determines the number
array elements produced (born) or consumed (dying) durin
each assignment.

The number of array elementproduced by an

a)

Figure 5. Memory estimation
flow for the illustrative

assignment is given by the size of the correspondin example
definition domains. In the illustrative example, the number o We illustrate the construction of the bounding
array elements produced in the three loopsCaed{a][l], rectangles for the second loop in Figure 4. It is known from

1<=I<=10} = 10, Card{b[l], 1<=I<=10} = 10, and Step 1 that 10 array elemenb§l(.10]) are produced, while



the operand domaiafl] consumes 2 array elements, and the5. Discussion on parallelism vs. memory size

operand dpmaia[ll-l] consumes 3. Since at most 7 out of | e following we present a more complex example (Figure
the 10 assignments may not consume any values (the othez) "\ hich shows the utility of the estimation tool. This code

will f_onsume at_f It?]as;[_ 1t7value_), the tmaX|munt1 storagionains gorall loop and multiple instructions executed in
variation occurs, if the first 7 assignments generate one negarallel (usingzobegin-coenyd

value each, without consuming any, and all the consumptior By analyzing the memory behavior of this code
occur later. Knowing from Step 2 that the memory size is 155 ming thdorall loop actually as a simpler, executed

at the beginning of loop 2, it follows that the upper-bound 0ge g entially (we did not replicate the code due to lack of
the memory size for this loop is 10+7=17 locations. W'thspace), we obtain the behavior in Figure 8, and after the

similar reasoning, one can conclude that during the executitga-ond pass we determine that the memory size is between
of this loop, the memory trace could not go below 8 Iocation[396_.398]_

(see Figure 5c¢). Thus, the bounding rectangle for this loop hi By allowing theforall loop to be executed in parallel, the
the upper edge 17, and lower edge 8. memory behavior becomes the one depicted in Figure 9, and
4.4 Determining the memory size range the memory size is 300. Thus, the memory size for the
The memory requirement for a specification is the peak of thparallel version of the code is 25% less than for the sequential
memory trace. Since the peak of the trace is contained withcase.
the bounding rectangles (along with the whole memon Having the parallel version require 25% less memory
trace), the highest point among all the bounding rectanglethan the sequential one is a surprising result, since common
represents an upper-bound of the memory requirement. Fsense would suggest that more parallelism in the code would
our illustrative example, the memory requirement will notneed more memory. We have done some preliminary
exceed 17 - the highest upper-edge of the bounding rectangexperiments in this direction, and they all seem to imply that
(see Figure 5c). more parallelism does not necessarily mean more memory.
Since the memory size at the boundaries between ttMoreover, we could not find (or produce) any example where
loop nests is known, the memory requirement will be at leathe most parallel version of the code needs more memory
the maximum of these values. The maximum memory size than all the sequential versions. For most of the examples, the
the boundary points thus represents the lower-bound of ttmost parallel version had less memory requirement than most
memory requirement. For our illustrative example, theof the sequential ones. A possible explanation could be the
memory requirement is higher than 15 (the lower dotted linfact that when instructions are executed in parallel, values are
in Figure 5c), which is the maximum of the values at the¢produced early, but also consumed early, and early
boundaries of the three loops (Figure 5a). Therefore, thconsumption leads to low memory requirement. We intend to
actual memory requirement will be in the range [15..17]. Thiccontinue our work in this direction.

memory requirement range represents the result of the fir ;120 t0 97 do Occupied ,

. . . mem. Memory size = 398
pass of the algorithm. The last step of our algorithm decide a2+, 0] = 0; a[2*1+1, 0] = 1; size
whether a more accurate approximation is necessary, in SU for J=0 to 99 do cobegin

case initiating an additional pass. a[2*,J+1]=a[2*1+1,J];

4.5 Improving the estimation accuracy Coe":][dzf'”'“l]:a[z*”]?
If the current estimation accuracy is not satisfactory, for eac ;.. 198 to 99 do

loop nest whose rectangle may contain the memory trac a4 o) = 0; aj2+1+1, 0] = 1; loop 1 loop 2 Toop

peak (the upper_edge higher than the previous memo for 3=0 to 99 do cobegin Figure 8. Memory behavior
lower-bound), a split of the iteration space is performed (b a[2*1,3+1]=a[251+1,J]; for example with
gradually splitting the range of the iterators, thus fissioning  if(11=99) a[2*1+1,3+1]=a[2,J] simple for loop

the loop nest). Theritical rectangles corresponding to these else a[211+1,J+1=a[2"1,1+al2"-2.3]; Occupied | e = 300
loop nests will be replaced in a subsequent pass of tf  coend; Size emory size =

estimation algorithm by two new rectangles covering ¢ forJ=0to99do

smaller area (Figure 6a) and, therefore, following mor for;;2|t3+9190‘i]°:‘;([’;elfil"j+100]_ sod__ 2043 42@” '
accurately the actual memory trace, thus yielding a mor " . ’ 20 range
. . a[2*1+1,J+101]=a[2*],J+100]+ 10 200
accurate memory behavior analysis, and a more exa a[2,3+99];
estimation. This process is iteratively repeated until ¢  coeng: loop 1loop 2loop 3™ ime
convenient estimation accuracy is reached. Figure 6a shov _ — Figure 9. Memory
the refined bounding area, and 6b presents the actual mem¢Figure 7. Input specification  pehavior for example
trace for our example. with parallel instructions with forall loop
. O 1, d .
merg Mema 6 Experimental results
sSize Size n . . . .
1 1 We compared our algorithm against a memory estimation
o N tool based on symbolic execution, which assigns the signals
_ o L, to memory on a scalar basis to maximize sharing. We ran both
a)_. time L) time algorithms on a SPARCstation 5, on 7 application kernels:
Figure 6. a) Accuracy refinement image compression algorithm (Compress), linear recurrence

b) complete memory trace



solver (Linear), image edge enhancement (Laplace), successstorage locations (we assume that the assignment of arrays to

over-relaxation algorithm [8] (SOR), two filters (Wavelett, the memory space is done at a later stage, and accounts for such

Low-pass), and red-black Gauss-Seidel method [8]. Thessharing, e.g., [3]). Our experiments on typical video and image

examples are typical in image and video processing. Some processing kernels show close to optimal results with very

them (e.g., SOR, Wavelett, G-S) exhibit complex affine indicereasonable time. More details are available in [4].

and conditionals. We have also discussed some preliminary results on the
The results of our tests are displayed in Table 1. Columrinfluence of parallelism on the memory size, and shown that

2 and 3 show the memory requirement and the computaticeven though (parallelizing) transformations entail large

time obtained with the symbolic execution method. Thisvariations, more parallelism does not necessarily mean more

memory size represents the optimal in terms of locationmemory locations. A surprising result is that often the opposite

sharing. Column 4 represents the memory size estimate obtainis true. We plan to continue our research in this direction.

with our algorithm (note that this is a lower-bound for the
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